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This study investigates the two-dimensional flow of a solitary wave that passes over
a submerged rectangular obstacle using a Lagrangian-type numerical method. The
main purpose is to investigate vortex generation and evolution caused by the obstacle.
The numerical method is based on the combination of vortex methods and boundary
integral methods using the Helmholtz decomposition. The simulated flow pattern is
compared with the experimental measurements in detail, and the overall agreement is
reasonably good. A series of simulations were performed with various wave heights
to study the effect of wave height on vortex generation and evolution. The relation
between the vorticity field and the drag experienced by the obstacle is also discussed.
In the presented cases, the effects of the generated vortices are preserved over a long
period, and may cause local scouring of the foundation at the lee side of the obstacle.
The deformation of the solitary wave is not much affected by the presence of the
vortices, but the drag is significantly affected by the vorticity field. An almost linear
relationship between the Reynolds number and the maximum magnitude of the drag
(positive and negative) is observed.

1. Introduction
Wave-structure interaction is a classical subject in water wave mechanics. This

subject is closely associated with issues in coastal engineering, such as the construction
of submerged breakwaters to dissipate wave energy or to retard the offshore movement
of sand. The occurrence of scouring around breakwaters is also an important
area of research because it is one of the major failure modes of these structures. In
the past, although scour at emerged breakwaters has been studied fairly extensively,
very little is known about scour at/around submerged breakwaters (Sumer et al.
2005). For example, Sánchez-Arcilla and his co-workers conducted the experimental
investigations on the scouring caused by the wave field over/through/around the trunk
section of submerged structure (Gironella & Sánchez-Arcilla 1999; Sánchez-Arcilla
et al. 2000). Sumer et al. (2005) conducted a systematic experimental study of scour
around low-crested structures/submerged breakwaters, for both the two-dimensional
trunk section scour and the three-dimensional roundhead scour.

Many studies of flows of surface waves and submerged obstacles have been
performed using potential flow theory based on the assumption that the flow is
irrotational (e.g. Mei & Black 1969; Baker, Meiron & Orszag 1989; Grue 1992;
Yeung & Vaidhyanathan 1992; Grilli, Losada & Martin 1994; Guyenne & Nicholls
2005). However, flow separation should not be neglected in the study of the flow field
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around submerged bodies. Consequently, several researchers have studied this problem
by solving the Navier–Stokes equations for laminar flows or the Reynolds-averaged
Navier–Stokes equations with turbulence closure for turbulent flows, using various
numerical approaches, including finite difference methods (e.g. Zhang & Chwang
1999; Chang, Hsu & Liu 2001), finite analytic methods (e.g. Tang & Chang 1998;
Sue, Chern & Hwang 2005), finite volume methods (e.g. Hsu, Hsieh & Hwang 2004)
and finite element methods (e.g. Idelsohn, Onate & Sacco 1999; Lo & Young 2004).
These are all grid-based schemes, and may not be capable of simulating the complex
vortex structures if the grid resolution in the vortical regions is not sufficiently fine
(see Lin et al. 2006).

Lin & Huang (2009) developed a numerical scheme that combines vortex
methods and boundary integral methods via the Helmholtz decomposition to
study the generation and evolution of the vortices in water waves that propagate
over a submerged structure. The major advantages of this approach are the
capacity of boundary integral methods to capture the motion of the free
surface and the essentially grid-free nature of vortex methods in simulating
the complex vortex structures in compact regions. Their numerical model was
confirmed by simulating periodic waves that move over a submerged rectangular
obstacle using non-uniform vortex blobs with mapping of the redistribution
lattice. Moreover, their computations neglected the generation of vorticity on the
sea-floor.

This study extends the work of Lin & Huang (2009) to the simulation of solitary
waves travelling over a submerged rectangular obstacle. In the computations in
this study, the vortex method with uniform blob size is employed, because for
a solitary wave the generated vortices are not confined in the regions close to
the corners of the obstacle. Additionally, the process of creation of vorticity at
the sea-floor is considered because it plays an important role in the formation of
vortices. First, to validate the numerical model, the experiment conducted by Lin
et al. (2006, referred to as LCHC from here on) is reproduced. In this calculation
case, the process of the generation and evolution of vortices is also studied in detail.
Then, the effect of wave height on the strength of vortices is investigated, and the
effects of the vortices on the wave deformation and the drag coefficient are also
discussed.

2. Description of flow problem
The problem of interest concerns the calculation of the two-dimensional flow

of a solitary wave over a submerged rectangular obstacle in a uniform channel.
Since for most problems in water wave mechanics the free-surface viscosity is
negligible, the generation of vorticity on the free surface can be neglected. A
Cartesian coordinate system is fixed such that the x-axis lies in the undisturbed
free surface and the y-axis points vertically upward (see figure 1, the image part
will be introduced later). Incompressible flow with constant density and viscosity is
considered, and the motion of the fluid can be determined using the vorticity transport
equation,

Dω

Dt
=

∂ω

∂t
+ u · ∇ω = ν∇2ω, (2.1)

where u is the velocity field, ν is the molecular viscosity, and ω = k̂ · ∇ × u is the

vorticity field with the unit vector k̂ out of the page.
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Figure 1. Definition sketch for water waves over a submerged obstacle.

On the free surface, the flow field satisfies the kinematic and dynamic boundary
conditions,

DxF

Dt
= u(xF ) (2.2)

and
Du
Dt

(xF ) = − 1

ρ
∇pa − g∇(xF · ĵ ), (2.3)

respectively, where xF represents the free-surface points, pa is the pressure at the free

surface and ĵ is the unit vector pointing vertically upward. The no-slip boundary
condition is imposed at the surface of the obstacle and on the bottom of the channel
(the sea-floor). At the lateral boundaries, numerical sponge layers (cf. Baker et al.
1989) are set to truncate the computational domain into a limited region and to
absorb the outwardly travelling waves.

3. Outline of numerical method
The numerical model employed herein is based on the scheme of Lin & Huang

(2009). Since the details of the model are lengthy, this section presents only an outline.
Applying the integral formulations of the Helmholtz decomposition (see Morino

1990) yields the integral representation for the velocity field:

u(x) =

∫
V

ω(x ′)k̂ × ∇G dx ′ +

∫
SF

ΓF (x ′)k̂ × ∇G dx ′, (3.1)

where SF denotes the free surface; ΓF is the strength of a vortex sheet that is induced
by the jump in tangential velocity across the free surface and G is the fundamental
solution of Laplace’s equation given by

G = G(x, x ′) =
1

2π
ln |x − x ′|. (3.2)
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From this integral formulation, an alternative problem may be constructed for
solving xF , ΓF and ω rather than the original problem with primitive variables. The
vorticity field ω is determined by applying vortex methods to obtain a numerical
approximation in terms of N vorticity-carrying particles

ω(x, t) =

N∑
j=1

η(x − xj (t))Γj (t) (3.3)

with their circulation Γj and distribution function η. In this work, a Gaussian
distribution is used:

η(x) =
1

2πε2
exp

(
−|x|2

2ε2

)
, (3.4)

where the quantity ε is the core size of the vortex particles. According to (2.1), the
transport of vorticity is solved by convecting the particles in a Lagrangian frame and
accounting for viscous effects by changing their strength. In this work, viscous effects
are simulated using the method of particle-strength exchange (Degond & Mas-Gallic
1989).

The free-surface points xF and the strength of the vortex sheet ΓF are determined
by imposing the free-surface boundary conditions. Additionally, to determine the
vorticity flux at the solid boundary, a spurious vortex sheet on SB is obtained
by imposing the no-penetration boundary condition. For convenience, the complex
notation z = x + iy is used for the complex field point and q = u + iv represents the
complex velocity, where q is not an analytic function. The kinematic and dynamic
free-surface boundary conditions, (2.2) and (2.3), respectively, and the no-penetration
boundary condition on the surface of the obstacle can be expressed as

∂zF

∂t
(e, t) = qF (e) +

αγF

2(z∗
F )e

, (3.5)

∂γF

∂t
= −2

[
Re

{
∂q∗

F

∂t
(zF )e − αγF

2

(qF )e
(zF )e

}
+ g(yF )e

]
+

(
α

2
− 1

4

)
∂

∂e

γ 2
F

(zF )e(z
∗
F )e

, (3.6)

∂γB

∂t
= 2Re

{
(zB)e

∂q∗
B

∂t

}
, (3.7)

where e is the Lagrangian variable along the boundaries, ( )e denotes differentiation
with respect to the label e and the asterisk indicates complex conjugate. γF is
the non-normalized strength of the vortex sheet at the free surface, given by
γF (e) = ΓF (e)|(zF )e|; γB represents the spurious vortex sheet on SB; qF and qB are the
principal-value velocity on the free surface and the solid boundary, respectively, and
given by

q∗
F (e) =

1

2πi
−
∫

SF

γF (e′)

zF (e) − zF (e′)
de′ +

1

2πi

∫
SB

γB(e′)

zF (e) − zB(e′)
de′ 1

2πi

N∑
j=1

Γj

zF (e) − zj

,

(3.8)

q∗
B(e) =

1

2πi

∫
SF

γF (e′)

zB(e) − zF (e′)
de′ +

1

2πi
−
∫

SB

γB(e′)

zB(e) − zB(e′)
de′ +

1

2πi

N∑
j=1

Γj

zB(e) − zj

.

(3.9)
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Equation (3.5) is used to determine the Lagrangian motion of the free-surface position
xF . The velocity of these Lagrangian points is a weighted average of the velocities
across the free surface, chosen by the weighting factor α (|α| � 1).

The evolution equations for γF and γB , (3.6) and (3.7), respectively, are coupled
Fredholm integral equations of the second kind, and can therefore be efficiently solved
using an iteration algorithm (see Baker, Meiron & Orszag 1982 for more details).
To determine efficiently the vortex flux on the bottom of the channel, the method
of image is employed (as presented in the lower part of figure 1) such that the
no-penetration condition is automatically fulfilled, and the spurious slip velocity is
then turned into the vorticity flux (see Koumoutsakos, Leonard & Pépin 1994). The
vorticity creation from solid boundaries (the surface of the obstacle and the bottom
of the channel) is performed by distributing vorticity flux to neighbouring particles. In
this study, the approximate solution proposed by Ploumhans & Winckelmans (2000)
to determine the increasing rate of the circulation of particles due to the vorticity
flux is used. An artificial viscosity model (Cottet 1996), regarded as an eddy viscosity
model in vortex methods, is adopted to cancel the contribution from the antidiffusive
part of the truncation error involved in vortex computations. A particle redistribution
scheme (see Lin & Huang 2009) is applied every five time steps to ensure a good
overlap of the core sizes of the particles. In the redistribution procedure, the overlap
ratio (defined as the inter-particle spacing divided by the particle size) is set equal to
one. A fourth-order Adams–Bashforth–Moulton predictor-corrector scheme is utilized
to perform the time integrations for ∂γF /∂t and ∂γB/∂t (fourth-order Runge–Kutta
technique for the first few time steps). The time marching of the positions of vortex
particles is performed using a second-order Adams–Bashforth scheme (second-order
Runge–Kutta for the first step and after each redistribution).

4. Calculation of drag coefficient
The drag force FD is computed as the sum of the pressure drag and the friction

drag:

FD = ρ î ·
{∫

SB

p n̂ dS + ν

∫
SB

n̂ × (ωk̂) dS

}
, (4.1)

and the drag coefficient cD on the obstacle is then given by

cD =
FD · î

1
2
ρg[h2 − (h − d)2]

. (4.2)

In (4.1), the friction drag can be computed directly from the vorticity on the surface
of the obstacle. The pressure field may be obtained by solving the pressure Poisson
equation

∇2B = ∇ · (u × (ωk̂)), (4.3)

where B is the so-called total pressure defined as

B =
p

ρ
+

|u|2
2

+ gy. (4.4)

The pressure on the surface of the obstacle is determined using the integral equation
formulation derived from (4.3) (see Uhlman 1992):

1

2
B −

∫
S

B
∂G

∂n
dx ′ =

∫
V

∇G · (ωk̂ × u) dx ′ +

∫
S

{
Gn̂ · ∂u

∂t
+ ν∇G · (n̂ × k̂)ω

}
dx ′. (4.5)



508 M.-Y. Lin and L.-H. Huang

Case No. H/h d/h l/h h U Re (Uh/ν)

1 0.17 3/7 6/7 0.07 0.27 1.88 × 104

2 0.3 3/7 6/7 0.07 0.50 3.47 × 104

3 0.4 3/7 6/7 0.07 0.69 4.80 × 104

4 0.5 3/7 6/7 0.07 0.89 6.22 × 104

Table 1. Conditions for the calculation cases.
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Figure 2. Free-surface profiles at various times for H/h = 0.17.

5. Results and discussion
This section presents the computational results concerning the flow around a

submerged rectangular obstacle that is attacked by a solitary wave. Computations
are performed for various values of H/h, where H is the incident wave height and
h is the still water depth. The case of H/h =0.17 is considered first to validate the
presented numerical method and provide some insight into the processes of unsteady
separation and vortex shedding that occur in such flows. The computations are non-
dimensionalized by the still water depth h and the linear long-wave phase speed

√
gh.

In all computations, a channel with domain −25 � x/h � 25 and a rectangular
obstacle with height d/h = 3/7 and length l/h= 6/7 are used. The centre of the
obstacle is located at x =0. Sponge layers are placed at −25 � x/h � −24.5 and
24.5 � x/h � 25. In all runs, 870 panels on the free surface and 400 panels on the
boundary of the obstacle are used. The initial wave profile is obtained using Tanaka’s
method (Tanaka 1986), which can determine the exact solitary wave solution. Table 1
summarizes the conditions of the computations presented herein. The Reynolds
number (Re) is evaluated based on the depth-averaged velocity (U ) under the wave
crest and above the obstacle, which is estimated by the following formula (see Chang,
Hsu & Liu 2005):

U =
H

h − d

√
g(h + H ).

5.1. Generation and evolution of vorticity in the case H/h = 0.17

Figure 2 presents the free-surface profiles at various times obtained from the numerical
results for case 1. Here, t =0 represents the moment when the wave crest arrives at
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Figure 3. Evolution of the vorticity field for H/h = 0.17.

the leading edge of the obstacle. One may observe the weak deformation of the
transmitted wave and the reflected waves with relatively small amplitudes. Figure 3
presents the evolution of the vorticity field in which the magnitude of vorticity is
non-dimensionalized by h in length and

√
gh in celerity. As expected, small vortices

are formed when the wave crest approaches the obstacle. When the wave crest
passes through the obstacle, the vortices are convected downstream, grow in size
and induce strong secondary vorticity. A Kelvin–Helmholtz-type instability in the
separating shear layer from the trailing edge appears at time t

√
g/h ≈ 4. As the flow

field gradually becomes dominated by vorticity, the lee-side vortex moves upward and
interferes with the shedding process at the trailing edge of the obstacle. Accordingly,
the newly generated separating shear layer rolls up counterclockwise and then pairs
up with the upward-moving vortex to form a dipolar structure. Since the clockwise
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Figure 5. Comparison of the velocity fields near the sea-floor at the lee side of the obstacle
between (a) the experimental measurements by LCHC (at t

√
g/h = 12.43) and (b) the numerical

results for H/h = 0.17 (at t
√

g/h = 12.5).

vortex has more circulation than the other, the dipole moves off to the right along a
curved trajectory. Meanwhile, at the lee side of the obstacle, a small vortex is formed
at the sea-floor.

LCHC performed an experimental study of this flow for h = 0.07 m using laser-
induced fluorescence (LIF) and particle image velocimetry (PIV) systems. Figures 4
and 5 compare the local velocity field computed by the presented model with that
measured by LCHC. It is evident that the numerical results exhibit features of
the complicated vortex structures and agree quite closely with the experimental
observations. Figure 6 presents the evolution of the global flow pattern obtained
by LCHC. Note that the leading-edge vortices cannot be presented clearly because
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turbulent mixing diluted the fluorescent dye. One may observe that the computational
results agree satisfactorily with the observations made in the laboratory, except when
the lee-side vortex pair is close to the free surface. This fact is attributable to the
accumulation of numerical errors in the computations. However, it may also be
reasonably attributed to experimental errors caused by the weak reflection of waves
from the end of the wave tank.

5.2. Effects of wave height on vortex generation

To study the effects of the wave height on the generation and evolution of vortices,
further calculations are made for H/h = 0.3, 0.4 and 0.5. As an example, figures 7 and 8
plot the evolution of the free-surface profile and the vorticity field for H/h = 0.5. As
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expected, when the wave height H is larger, the strength of the resulting vortices is
greater and their effects stronger. For example, a significant vortex that is formed
near the sea-floor at the lee side of the obstacle and a local disturbance of the free
surface that is caused by the approach of the lee-side vortex pair may be observed.
The results suggest that the formation of the lee-side vortices may cause the scouring
of the seabed around coastal structures. Notably, since the vortical flow structure in
the case H/h = 0.5 becomes very complicated, three-dimensional effects may occur in
reality.

In figure 9, the evolution of the wave profiles in all cases, which is computed using
the presented model, is compared with the potential-flow result that is computed
under the assumption that the flow is inviscid and irrotational. The results reveal that
the free-surface displacement that is caused by the vortices is positively correlated with
the incident wave height, mainly because of the bulge of the leading-edge vortices,
which changes the effective boundary of the flow above the submerged body.

Because the evolution of the minimum value of the stream function (ψc) in the
core of the lee-side vortex is useful in monitoring the development of the vortex
(as an example, figure 10 shows the evolution of the instantaneous streamlines for
H/h = 0.17), the time histories of |ψc| for different wave heights are plotted in
figure 11. These curves follow a similar trend: the lee-side vortex reaches its strongest
state when the wave crest has left the obstacle and the vortices have begun to
dominate the flow field. Figure 12 plots the maximum value of |ψc| as a function
of Re. Since Re depends linearly on H/h, a nearly linear relationship between the
maximum value of |ψc| and Re is presented.

5.3. Drag coefficient

In figure 13, the drag coefficients that are computed using the present model and by
the potential-flow version of the model in each case are presented together. These
curves are similar in that they reach their positive maximum when the wave crest
approaches the leading edge of the obstacle and then decline gradually to a negative
value as the wave crest passes through the obstacle. Since the vortices act to ‘pull’ the
obstacle in the positive x-direction, the negative maximum of the drag is much less
than its positive maximum. In contrast, the drag determined from the potential-flow
model is almost symmetric because it is caused only by the displacement of the water
surface and the solitary wave is almost preserved. Additionally, an almost linear
relationship between Re and the maximum drag coefficient (positive and negative) is
observed, as presented in figure 14.

6. Concluding remarks
A Lagrangian-type numerical scheme that combines boundary integral methods

with vortex methods by the Helmholtz decomposition was adopted to investigate
numerically a solitary wave that passes over a submerged rectangular obstacle. The
details of the generation and evolution of the vortices caused by flow separation
from the obstacle are studied. In this problem, the separating shear layers that cause
the generation of vortices are confined inside small regions around the submerged
obstacle. The presented model is capable of simulating the separation of shear layers,
as the vorticity-carrying elements automatically adjust to such regions. In contrast,
in grid-based simulations, vortices may decay too rapidly because of numerical
dissipation if the grid resolution in the vortical regions is not sufficiently fine.
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Figure 9. Free-surface profile at t
√

g/h = −2, −1, 0, 1, 2, 3, as computed by the present model
(——) and by the potential-flow model (- - -). (a) H/h = 0.17, (b) H/h = 0.3, (c) H/h = 0.4
and (d ) H/h = 0.5.
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Figure 12. Maximum magnitude of the stream function in the core of the lee-side vortex as
a function of the Reynolds number.
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Figure 13. Comparison of the drag coefficient computed by ——, present model; - - -,
potential-flow model.

In contrast to most previous numerical studies in this field (e.g. Tang & Chang
1998; Chang et al. 2001; Huang & Dong 2001), the results in this work reveal
the detailed features of complicated vortex structures and agree satisfactorily with
experimental observations. Results of this study elucidate the mechanisms of boundary
layer separation and vortex shedding from structures submerged under solitary waves.
The presented simulations also reveal that the effects of the generated vortices are
preserved over a long period, and may cause local scouring of the foundation of
submerged structures. As the wave height increases, the size and strength of the
induced vortices increase. This phenomenon can be simply specified in terms of
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Figure 14. Maximum drag coefficient (positive and negative) versus the Reynolds number.

the H/h ratio. The bulging of the weather-side vortices on the obstacle changes the
effective boundary of the flow above the submerged body, and may increase the height
of the reflected waves and reduce the height of the transmitted wave. Although the
solitary wave is almost preserved during which it propagates through the obstacle, the
curve of the time history of the drag coefficient is asymmetric. This is mainly caused
by the lee-side vortices, which act to ‘pull’ the obstacle in the positive x-direction.
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